電機工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/85

歷史沿革

本系成立宗旨在整合電子、電機、資訊、控制等多學門之工程技術,以培養跨領域具系統整合能力之電機電子科技人才為目標,同時配合產業界需求、支援國家重點科技發展,以「系統晶片」、「多媒體與通訊」、與「智慧型控制與機器人」等三大領域為核心發展方向,期望藉由學術創新引領產業發展,全力培養能直接投入電機電子產業之高級技術人才,厚植本國科技產業之競爭實力。

本系肇始於民國92年籌設之「應用電子科技研究所」,經一年籌劃,於民國93年8月正式成立,開始招收碩士班研究生,以培養具備理論、實務能力之高階電機電子科技人才為目標。民國96年8月「應用電子科技學系」成立,招收學士班學生,同時間,系所合一為「應用電子科技學系」。民國103年8月更名為「電機工程學系」,民國107年電機工程學系博士班成立,完備從大學部到博士班之學制規模,進一步擴展與深化本系的教學與研究能量。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    On-line Adaptive T-S Fuzzy-Neural Control for A Class of General Multi-Link Robot Manipulators
    (中華民國模糊學會, 2008-12-01) W.-Y. Wang; Y.-H. Chien; Y.-G. Leu; T.-T. Lee
    This paper proposes a novel method of on-line modeling and control through the Takagi-Sugeno (T-S) fuzzy-neural model for a class of general n-link robot manipulators. Compared with previous methods, this paper has two unique aspects: first, a more general n-link robot system using on-line adaptive T-S fuzzy-neural controller is investigated, and second, the complete proof of the controller is given. The general robot systems are linearized via the mean value theorem, and then the T-S fuzzy-neural model can approximate the linearized system. Also, we propose an on-line identification algorithm and put significant emphasis on robust tracking controller design using an adaptive scheme for the robot systems. Finally, an example including two cases is provided to demonstrate the feasibility and robustness of the proposed method.
  • Item
    An On-Line Robust and Adaptive T-S Fuzzy-Neural Controller for More General Unknown Systems
    (中華民國模糊學會, 2008-03-01) W.-Y. Wang; Y.-H. Chien; I-H. Li
    This paper proposes a novel method of on-line modeling via the Takagi-Sugeno (T-S) fuzzy-neural model and robust adaptive control for a class of general unknown nonaffine nonlinear systems with external disturbances. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known on the more complicated and general nonlinear systems. Compared with the previous approaches, the contribution of this paper is an investigation of the more general unknown nonaffine nonlinear systems using on-line adaptive T-S fuzzy-neural controllers. Instead of modeling these unknown systems directly, the T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS), with modeling errors and external disturbances. We prove that the closed-loop system controlled by the proposed controller is robust stable and the effect of all the unmodeled dynamics, modeling errors and external disturbances on the tracking error is attenuated under mild assumptions. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper