1 results
Search Results
Now showing 1 - 1 of 1
Item 多編碼器端到端模型於英語錯誤發音檢測與診斷(2021) 范姜紹瑋; Fan Jiang, Shao-Wei隨著全球化的加速,大多數人需要學習第二語言(Second language, L2),相較之下,語言教師的人數增長卻無法跟上語言學習的需求。因此越來越多研究著重在電腦輔助發音訓練(Computer-assisted pronunciation training, CAPT),嘗試利用電腦輔助學習者做更方便且有效的學習。在 CAPT 中,最重要的模組為以自動語音辨識(Automatic speech recognition, ASR)為核心技術的錯誤發音和診斷(Mispronunciation detection and diagnosis, MD&D)。然而,現有 MD&D 模型仍面臨兩個問題:一、任務不匹配。純語音辨識任務並未充分利用提示文本(Text prompt)於訓練階段。二、口音多樣性。第二語言學習者具有特殊的發音習慣,該習慣的聲學或語言特性會導致模型效能辨識困難。基於上述兩個問題,本研究提出兩個解決方向於端對端 MD&D 模型 (End-to-end MD&D, E2E MD&D)。首先,我們使用不同細粒度(音素與字元)的文本提示進行輸入增強,使 E2E ASR 更適合 MD&D 任務。其次,我們設計兩種不同面向的口音感知模塊,提示模型口音資訊以及消除口音資訊,嘗試減輕口音多樣性於 E2E MD&D 系統的影響。實驗結果表明,在公開二語語料庫 L2-ARCTIC 上,我們提出 MD&D 模型具有明顯的優勢與有效性。