A Dynamic Hierarchical Fuzzy Neural Network for A General Continuous Function

dc.contributor國立臺灣師範大學電機工程學系zh_tw
dc.contributor.authorW.-Y. Wangen_US
dc.contributor.authorI-H. Lien_US
dc.contributor.authorS.-C. Lien_US
dc.contributor.authorM.-S. Tsaien_US
dc.contributor.authorS.-F. Suen_US
dc.date.accessioned2014-10-30T09:28:12Z
dc.date.available2014-10-30T09:28:12Z
dc.date.issued2009-06-01zh_TW
dc.description.abstractA serious problem limiting the applicability of the fuzzy neural networks is the “curse of dimensionality”, especially for general continuous functions. A way to deal with this problem is to construct a dynamic hierarchical fuzzy neural network. In this paper, we propose a two-stage genetic algorithm to intelligently construct the dynamic hierarchical fuzzy neural network (HFNN) based on the merged-FNN for general continuous functions. First, we use a genetic algorithm which is popular for flowshop scheduling problems (GA_FSP) to construct the HFNN. Then, a reduced-form genetic algorithm (RGA) optimizes the HFNN constructed by GA_FSP. For a real-world application, the presented method is used to approximate the Taiwanese stock market.en_US
dc.description.urihttp://computer.niu.edu.tw:8080/ePublication/2009_paper_2/ijfs09-2-s-3_wayne_wang_(2).pdfzh_TW
dc.identifierntnulib_tp_E0604_01_015zh_TW
dc.identifier.issn1562-2480zh_TW
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31937
dc.languageenzh_TW
dc.publisher中華民國模糊學會zh_tw
dc.relationInternational Journal of Fuzzy Systems, 11(2), 130-136.en_US
dc.subject.otherhierarchical structuresen_US
dc.subject.othergenetic algorithmsen_US
dc.subject.otherFuzzy neural networksen_US
dc.titleA Dynamic Hierarchical Fuzzy Neural Network for A General Continuous Functionen_US

Files

Collections