利用AI生成圖像進行少樣本分類之研究

dc.contributor葉梅珍zh_TW
dc.contributorYeh, Mei-Chenen_US
dc.contributor.author童彧彣zh_TW
dc.contributor.authorTung, Yu-Wenen_US
dc.date.accessioned2024-12-17T03:37:19Z
dc.date.available2026-08-09
dc.date.issued2024
dc.description.abstract本研究探討AI生成圖像應用於少樣本分類的問題,其任務是增加資料集中的樣本多樣性,以提高模型的分類能力。現有的數據擴充方法,如影像旋轉、縮放和使用生成對抗網路產生新樣本是基於現有少數樣本而生成圖像,此類方法會導致數據仍不夠多樣。因此本研究利用生成式AI模型(DALL-E)生成多樣化圖片,可以有效增加資料集的多樣性。然而,我們發現直接將生成圖像加入到真實圖像的訓練集會降低模型準確率,因為生成圖像和真實圖像的特徵空間存在距離。因此,我們提出一個特徵轉換器,將生成圖像特徵映射到真實圖像特徵空間,以縮短兩者特徵空間之間的距離。實驗結果表明,生成圖像映射到真實圖像的特徵空間可以增加樣本的分佈數量,進而提升模型的分類能力。zh_TW
dc.description.abstractThe goal of this study is to improve the model's classification performance by increasing the diversity of samples in the dataset through the application of AI-generated images for few-shot classification. Existing methods of augmenting data generate images based on just a few sets of known samples, such as rotating and resizing images and using Generative Adversarial Networks (GANs) to generate new samples. It is possible that these methods might produce insufficiently varied data. This work generates a variety of images using a generativeAI model (DALL-E) in order to successfully increase the diversity of the dataset.However, because there is a gap between the feature spaces of generated and real images, we observed that adding generated images directly to the training set of real images reduces the accuracy of the model. To minimize the distance between the two feature spaces, we propose a feature encoder that maps the features of generated images to the feature space of real images. Based on the experiments, the model's classification performance can be improved by increasing the distribution of samples through mapping the generated images to the real image feature space.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifier60947018S-46008
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/b2c35f46fb99b71db2eb759d89e93b18/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/123691
dc.language中文
dc.subject少樣本分類zh_TW
dc.subject圖像生成zh_TW
dc.subject特徵轉換zh_TW
dc.subjectFew-Shot Classificationen_US
dc.subjectImage Generationen_US
dc.subjectFeature Mappingen_US
dc.title利用AI生成圖像進行少樣本分類之研究zh_TW
dc.titleA Study on Using AI-Generated Images for Few-Shot Classificationen_US
dc.type學術論文

Files

Collections