電機工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/85

歷史沿革

本系成立宗旨在整合電子、電機、資訊、控制等多學門之工程技術,以培養跨領域具系統整合能力之電機電子科技人才為目標,同時配合產業界需求、支援國家重點科技發展,以「系統晶片」、「多媒體與通訊」、與「智慧型控制與機器人」等三大領域為核心發展方向,期望藉由學術創新引領產業發展,全力培養能直接投入電機電子產業之高級技術人才,厚植本國科技產業之競爭實力。

本系肇始於民國92年籌設之「應用電子科技研究所」,經一年籌劃,於民國93年8月正式成立,開始招收碩士班研究生,以培養具備理論、實務能力之高階電機電子科技人才為目標。民國96年8月「應用電子科技學系」成立,招收學士班學生,同時間,系所合一為「應用電子科技學系」。民國103年8月更名為「電機工程學系」,民國107年電機工程學系博士班成立,完備從大學部到博士班之學制規模,進一步擴展與深化本系的教學與研究能量。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    毫米波之寬頻可變增益放大器與功率放大器設計
    (2023) 陳鈞霖; Chen, Chun-Lin
    隨著全球進入5G通訊的時代,毫米波的研究和發展越來越重要。其中毫米波所擁有的優勢為高速傳輸速率、較寬的頻寬和較低的延遲,因此,毫米波的運用變成眾人的發展目標。本論文將分別使用90-nm互補式金屬氧化物半導體製程和65-nm互補式金屬氧化物半導體製程,來實現主頻為28 GHz的寬頻增益放大器與寬頻功率放大器。第一個電路為28 GHz寬頻增益放大器,使用兩極皆為疊接組態增加整體的增益,同時使用第一級電流控制架構和基極偏壓技術,來達成較寬高的可變增益範圍,在可變增益範圍維持的前提下,使用共振腔及相位反轉技術達到低相位差。在這顆電路中,實現27 GHz~40 GHz的頻寬,增益皆大於16 dB,可變增益範圍皆可達到6.7,而相位差則低於5度。第二個電路為28 GHz寬頻功率放大器,利用兩級串接的方法增加電路的增益,同時利用變壓器來當作匹配網路和功率結合的元件,第二級放大器採用F類來提高效率。當操作頻率為28GHz時,功率增益(Power gain)為25.588 dB,飽和輸出功率(Psat)為16.558 dBm,最大功率附加效率Peak PAE約為44.821 %,1-dB增益壓縮點之輸出功率(OP1dB)約為12.941 dBm,整體靜態電流約為15.64 mA,功率消耗為18.768 mW。
  • Item
    38 GHz可變增益放大器與單邊帶調變混頻器設計
    (2019) 林禎芳; Lin, Chen-Fang
    隨著毫米波頻段的發展,在相位陣列(Phase Array)架構的射頻收發器中,可變增益放大器及混頻器為重要的元件。由於互補式金氧半導體製程(CMOS)的進步,近年來已經可以將大部分的射頻電路整合在一起,且CMOS具有低功率消耗、低成本及高整合度的優勢,因此本論文將使用TSMC 65nm CMOS製程,設計實現38 GHz可變增益放大器與單邊帶調變混頻器。 第一個電路為38 GHz低相位變化之可變增益放大器,採用兩級的電流控制架構(Current Steering),透過數位控制與相位補償技術,來維持在可變增益範圍內的低相位變化,及降低系統控制複雜度。當供應電壓Vdd為2 V,Vg1、Vg2分別為0.6 V、1.6 V時,在38 GHz有最高增益17.67 dB,可變增益範圍則是在2.61 dB ~ 17.67 dB,約有15.06 dB,相位差為2.69°,1-dB增益壓縮點之輸出功率OP1dB約為-0.68 dBm,整體功率消耗約為56.77 mW,整體晶片佈局面積為460 μm × 680 μm。 第二個電路為38 GHz單邊帶調變混頻器,藉由給予兩顆混頻器正交訊號,將兩個相差180°的輸出訊號合成後,會達到鏡像抑制之功能。由於我們使用來產生正交訊號的多相位濾波器(Poly Phase Filter),對於製程變異相當敏感,因此最後實現的單邊帶調變混頻器有頻飄的狀況。當電晶體偏壓為0.4 V,LO驅動功率為3 dBm時,頻帶為31 ~ 40 GHz,增益範圍為-16.3 ± 0.5 dB,鏡像抑制則有35 dB,整體晶片佈局面積為710 μm × 770 μm。