電機工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/85

歷史沿革

本系成立宗旨在整合電子、電機、資訊、控制等多學門之工程技術,以培養跨領域具系統整合能力之電機電子科技人才為目標,同時配合產業界需求、支援國家重點科技發展,以「系統晶片」、「多媒體與通訊」、與「智慧型控制與機器人」等三大領域為核心發展方向,期望藉由學術創新引領產業發展,全力培養能直接投入電機電子產業之高級技術人才,厚植本國科技產業之競爭實力。

本系肇始於民國92年籌設之「應用電子科技研究所」,經一年籌劃,於民國93年8月正式成立,開始招收碩士班研究生,以培養具備理論、實務能力之高階電機電子科技人才為目標。民國96年8月「應用電子科技學系」成立,招收學士班學生,同時間,系所合一為「應用電子科技學系」。民國103年8月更名為「電機工程學系」,民國107年電機工程學系博士班成立,完備從大學部到博士班之學制規模,進一步擴展與深化本系的教學與研究能量。

News

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    基於Transformer之全天空影像進行估計與預測日射量之系統
    (2023) 謝濟元; Hsieh, Chi-Yuan
    近年來再生能源發展日益興旺,太陽能作為可持續性發展能源。其發電量與日射量成正關,如能建立一穩定且準確的日射量預測,可加強對緊急狀況之應變能力。在眾多類神經網路類型當中循環神經網路(RNN)已發展多年,其中長短期記憶網路(LSTM)更是被大量使用於具時間序列特性之日射量預測。近年來有學者提出新型態類神經網路模型Transformer,雖其最初目的為語言辨識但因與RNN相似之特性也被大量使用於時間序列之預測。過往之日射量研究多以LSTM為主,然而Transformer模型具有不會梯度爆炸且可同時從多個序列獲取資訊等優點,故本論文嘗試提出一基於Transformer網路為架構之日射量預測模型並以多種效能評估指標與LSTM進行比較。此外,從過往研究可知天氣狀況對日射量有顯著之影響,因此本論文輔以隨機森林(random forest)對數據先進行分類以加強訓練精確度。實驗結果顯示Transformer有不亞於LSTM的預測準確率,在某些指標甚至更勝LSTM。