電機工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/85
歷史沿革
本系成立宗旨在整合電子、電機、資訊、控制等多學門之工程技術,以培養跨領域具系統整合能力之電機電子科技人才為目標,同時配合產業界需求、支援國家重點科技發展,以「系統晶片」、「多媒體與通訊」、與「智慧型控制與機器人」等三大領域為核心發展方向,期望藉由學術創新引領產業發展,全力培養能直接投入電機電子產業之高級技術人才,厚植本國科技產業之競爭實力。
本系肇始於民國92年籌設之「應用電子科技研究所」,經一年籌劃,於民國93年8月正式成立,開始招收碩士班研究生,以培養具備理論、實務能力之高階電機電子科技人才為目標。民國96年8月「應用電子科技學系」成立,招收學士班學生,同時間,系所合一為「應用電子科技學系」。民國103年8月更名為「電機工程學系」,民國107年電機工程學系博士班成立,完備從大學部到博士班之學制規模,進一步擴展與深化本系的教學與研究能量。
News
Browse
2 results
Search Results
Item A Sixth-Order 4-2 SMASH CIFF Complex Bandpass Delta-Sigma Modulator with Delaying Digital Input Feedforward(2010-06-02) Chien-Hung Kuo; Hung-Jing Lai; Deng-Yao ShiIn this paper, a sixth-order sturdy multi-stage noise shaping (SMASH) bandpass delta-sigma (ΔΣ) modulator with delaying digital input feedforward (DFF) structure is presented. The second-order ΔΣ modulator with cascade integrators and distributed feedforward (CIFF) is utilized in each stage to reduce the signal swing. Hence, the requirement of opamp and the power consumption of circuits can be reduced due to the suppression of the signal swing and the discarding of the digital cancellation filters. One pair of complex zeros is designed within signal bandwidth to effectively suppress the noise floor of the presented modulator. The sub-sampling technique is adopted to reduce the clock frequency and the requirement of opamp. Simulation results confirm the feasibility of the proposed SMASH CIFF bandpass ΔΣ modulator with delaying DFF structure. The proposed bandpass ΔΣ modulator compared to the single-loop AFF structure, the signal-to-noise plus distortion ratio (SNDR) could be increased by 12 dB, and the dynamic range (DR) could be extended by roughly 15 dB in a 200 kHz of signal bandwidth centered at 10.7 MHz.Item A Low-Voltage Fourth-Order Cascade Delta-Sigma Modulator in 0.18 um CMOS(IEEE Circuits and Systems Society, 2010-09-01) Chien-Hung Kuo; Deng-Yao Shi; Kang-Shuo ChangIn this paper, a low-voltage fourth-order 2-2 cascade delta-sigma (ΔΣ) modulator using the proposed double-sampling switched-operational-amplifier (SOP)-based integrator is presented. In the analog part of the ΔΣ modulator, most of the power consumption comes from the SOP used in the integrator. Hence, the requirement of the SOP must effectively be relaxed to reduce the power consumption of the modulator. In each cascade stage, the second-order ΔΣ modulator with a cascade-of-integrators input feedforward structure is used to reduce the output swing. The second integrator output of the first stage is directly connected to the second stage to simplify circuit design on the analog part. Furthermore, the double-sampling SOP-based integrator is also adopted to reduce the applied clock frequency by half. In this paper, systematic means of designing the presented modulator and searching the minimum current of the SOP in a specified supply voltage are also developed. The presented ΔΣ modulator is fabricated in a 0.18- μm 1P6M CMOS technology. The chip core area without PADs is 1.57 mm2 . The modulator achieves an 84-dB peak signal-to-noise plus distortion ratio and an 88-dB dynamic range in 20-kHz signal bandwidth with a clock frequency of 2 MHz. The power consumption of the presented modulator core is 0.66 mW at a supply voltage of 1 V. The presented modulator can also be operated in a wide range of supply voltages from 1.8 V down to 0.9 V without seriously degrading the performance.