Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
科技與工程學院
工業教育學系
學位論文
學位論文
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73897
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
search.filters.author.穆格銘
1
search.filters.author.Mu, Ko-Ming
Subject
search.filters.subject.PV system
1
search.filters.subject.Back Propagation Neural Network
1
search.filters.subject.forecasting
1
search.filters.subject.倒傳遞類神經網路
1
search.filters.subject.太陽能發電系統
Show more
Search subject
Submit
Browse subject tree
Date
Start
End
Submit
2016
1
Has files
1
No
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Author: search.filters.author.穆格銘
×
Subject: search.filters.subject.PV system
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
倒傳遞類神經網路技術應用於太陽能發電預測
(
2016
)
穆格銘
;
Mu, Ko-Ming
Show more
由於太陽光電並不會穩定的輸出電力,其原因是太陽光在照射到地球表面的過程中容易受到空氣中的物質所影響,例如雲層、雜質…等。當太陽光照射至太陽光電模組的過程中受到雲層等物質的遮蔽,太陽光電模組會立即降低發電量;太陽光電模組亦會因太陽能電池的材質、溫度、架設的地點以及面向方位而影響發電的效率。 本論文主要目的在於應用倒傳遞類神經網路技術於預測領前1至24小時之太陽能發電量,並分析於台中光電廠之發電預測效果。利用8種不同的輸入組合,架構倒傳遞類神經網路並比較各方法預測效果之優劣,最後選擇其中一種方法進行太陽能發電預測。根據預測結果顯示,加入未來因子之預測方法具有較好的預測結果。
Show more