學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73897

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    鯨魚演算法應用於三動力複合動力系統之最佳化能量管理
    (2021) 江明謙; Jiang, Ming-Qian
    本研究旨於開發鯨魚演算法 (Whale Optimization Algorithm, WOA) 應用於三動力複合動力車系統之最佳化能量管理,並透過硬體嵌入式系統 (Hardware-In-the-Loop, HIL) 進行即時 (Real-time) 運算,驗證開發之能量管理系統於真實環境應用可行性。三動力源複合動力車之系統搭載43 kW的內燃機引擎、30 kW的馬達與15 kW的一體式啟動發電機 (Integrated Starter Generator, ISG),搭配1.872 kW-h儲能鋰電池,整車重量為1,368 kg。於能量管理系統中,WOA透過三種行為模式進行最佳化搜索,分別為:(1) 探勘 (Exploration)、(2) 收縮環繞 (Shrinking Encircling)、(3) 螺旋更新 (Spiral Updating),最大迭代次數為300次,共有80隻鯨魚進行最佳化能量管理。本研究將開發之WOA與另外三種控制策略進行能耗比較:(1) 基本規則庫 (Rule-based):依工程經驗與元件性能所撰寫模式切換之策略,共設計五種模式 (煞車回充、純電動、複合動力、純引擎、引擎回充);(2) 最小等效油耗策略 (Equivalent Consumption Minimization Strategy, ECMS):透過全域格點搜尋 (Global Grid Search) 各種行車條件的所有可行解,進而倒推最小等效油耗時之動力分配方式;(3) 人工蜂群演算法 (Artificial Bee Colony, ABC):主要由三種蜜蜂角色分工進行最佳化搜尋,分別為:(i) 工蜂 (Employed bee)、(ii) 觀察蜂 (Onlooker Bee)、(iii) 偵查蜂 (Scout Bee),即時運算當下行車需求之最佳動力分配方式。各控制策略運行一次NEDC行車形態下,Rule-based、ECMS、ABC、WOA的等效燃油消耗量分別為[330.7g, 289.5g, 270.2g, 267.5g];運行一次FTP-72行車形態下的等效燃油消耗量分別為[342.9g, 291.4g, 278.9g, 275.9g]。在一次NEDC中,以Rule-based為基底相比的能耗改善百分比是[12.458%, 18.294%, 19.110%];在一次FTP-72中,能耗改善百分比是[15.018%, 18.664%, 19.539%]。Rule-based與WOA於10L燃油與起始電量90%的鋰電池耗盡下,於重複NEDC循環下的總行駛里程分別為[259.80 km, 276.66 km];於重複FTP-72循環下的總行駛里程分別為[258.93 km, 282.56 km]。在重複NEDC循環下,以Rule-based為基底相比的里程改善百分比為6.489%;在重複FTP-72循環下,里程改善百分比為9.126%。由此可知,導入最佳化方法於複合動力車輛進行動力分配,可有效降低整車能耗,進而提高行駛里程。本研究透過兩台快速雛型控制器,建立一即時模擬平台。驗證由WOA為核心開發之能量管理系統於真實環境應用可行性,在兩種行車型態中,於電腦模擬與HIL環境運算之等效油耗結果有高達98%的相似度,藉此,將可實現未來於實車應用之願景。