學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73894
Browse
2 results
Search Results
Item 基於K-means 演算法、小波轉換及支持向量機之心電訊號辨識系統(2011) 張家熏本論文利用小波轉換(Wavelet transform) 、K-means分群法(K-means clustering)及支持向量機(Support vector machine)等方法,建立一個辨識各種心律不整的心電辨識系統。本論文所提的方法可以大致區分為三個階段;第一階段使用K-means分群法把屬於同一類別但相異性卻很大的心律不整訊號分成數個次類別,在每一個次類別,各樣本會有較高的相似性。第二階段則把各次類別裡的每一個心搏樣本利用小波轉換擷取時頻特徵向量。第三階段以每一個心搏樣本的時頻特徵以及形態特徵為訓練資料,並運用支持向量機來建立本辨識系統的模型。為了驗證本系統的有效性以及可靠性,本論文利用MIT-BIH心律不整資料庫進行了三個實驗。實驗的結果本論文所提的方法具有相當高的辨識率達98.2%,最後與各相關辨識系統文獻比較差異。Item 肺音感測系統之設計與實現(2008) 余勝智本論文研究目的,是藉由現今語音訊號的分類與辨識技術的成長,設計與實現肺音量測之人機介面系統此系統先依據特徵值所定義的特性分類出正常肺音與異常肺音,進而辨識出肺部之病症,做為醫師診斷之參考,也提供臨床應用和教學交流之用。在本論文中,對於特徵值擷取、硬體架構、演算法推導以及類神經網路都有完整介紹。 在本研究中針對肺部所發出之哮鳴異常聲音做偵測及判別。哮鳴音是一種偶發性且呈現連續高音調的肺部聲音,當呼吸道收縮產生氣流時,氣流經狹窄氣管發生振動而產生聲音,此聲音中夾雜著咻咻的聲音特徵,所以經常被拿來當作某些肺部疾病的重要特徵之一。 所設計的肺音感測人機介面系統,共包含硬體與軟體兩大部分,硬體架構部份,包含壓電麥克風及資料擷取卡,用來擷取肺部聲音訊號並將類比訊號轉換成數位訊號至電腦端做處理。軟體架構部份,使用MATLAB及LabVIEW程式,先利用MATLAB模擬類神經整體架構之可行性及內部參數,再利用LabVIEW設計訊號前處理及特徵值轉換架構,並進一步整合建構成人機介面用來分析紀錄與顯示判斷其哮鳴音的特徵量測結果。 最後,經由訓練後之類神經網路架構分類,對於肺音訊號是否具有哮鳴異常肺音之判別,其正確率可達92%,並可由所設計之人機介面顯示其肺音波形、特徵值及頻譜分析圖,可供醫生作為診斷肺部疾病病患之輔助用。