學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73894

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    導電奈米纖維複合碳黑/石墨烯應用於鋁離子電池之研製
    (2019) 林至寬; Lin, Chih-Kuan
    可充電式之多價金屬離子電池由於具有高理論比電容值和較低之成本而受到廣泛的關注,其中,鋁具有存量豐富,安全性高,對環境友善和利用三電子進行氧化還原反應之高體積容量等優勢,被認為是下一代可充電電池的有力候選人。 本論文以SU-8 2050厚膜光阻為材料,使用黃光微影技術於尺寸2×2 cm2之鉬箔上製作SU-8圓柱陣列結構,並以靜電紡絲技術製備SU-8紡絲奈米纖維。接著透過靜電紡絲技術製備SU-8紡絲奈米纖維。再以兩段式升溫之高溫碳化製程將SU-8光阻轉變為類玻璃碳材料(Glassy carbon),完成直徑32 µm、深寬比5、間距80 µm之導電碳圓柱陣列結構以及線徑910 nm之碳奈米纖維(Carbon nanofiber)之製備。後續將碳奈米纖維以均質機破碎後,與石墨烯(Graphene)和碳黑(Carbon black)藉由NMP@PVDF黏著劑複合形成鋁離子電池陰極之電極漿料,並滴塗於導電圓柱陣列電極中,完成全碳之鋁離子電池陰極之製作。本論文選擇8組不同漿料用於製備鋁離子電池的陰極,包括未添加碳奈米纖維的漿料,以石墨烯:碳黑=1:0、1:1、1:5、1:8之比例製備四組電極,並於相同之石墨烯與碳黑比例下額外添加碳奈米纖維,再製備出石墨烯:碳黑:碳奈米纖維=1:0:0.5、1:1:0.5、1:5:0.5、1:8:0.5等四組電極。將電極均組裝成鋁離子電池元件後,透過恆電位儀進行循環伏安曲線(Cyclic voltammetry curve, C-V curve)測試以及恆電流充放電(Galvanostatic charge/discharge, GCD)之測試,評估電池之性能。量測結果發現,添加碳奈米纖維之四組電極的C-V 曲線面積,分別比未添加纖維之四組提升了660%、57%、-17%、314%。除石墨烯:碳黑:碳奈米纖維=1:5:0.5電極之C-V曲線面積有小幅度下降外,其餘電極之C-V 曲線面積均有大幅度提升,說明添加碳奈米纖維能夠提供更多比表面積供鋁離子嵌入與嵌出,進而提升電池效能。將上述8組電極所組裝而成之鋁離子電池中,選取性能較好之石墨稀:碳黑=1:1、1:5與石墨烯:碳黑:碳奈米纖維=1:0:0.5、1:1:0.5、1:5:0.5、1:8:0.5六組電極,以100 mA/g之電流密度進行恆電流充放電測試,並計算其比電容值,分別得到3.5、2.5、8.25、14、5、4 mAh/g的結果。其中,石墨烯:碳黑:碳奈米纖維=1:1:0.5之電極具有最高的充電比電容值12 mAh/g,以及放電比電容值14 mAh/g,並且具有85.7%之庫倫效率。此外,石墨烯:碳黑:碳奈米纖維=1:1:0.5與1:5:0.5兩組電極之比電容值,分別達到未添加碳奈米纖維電極的4倍與2倍。
  • Item
    以多維結構之微流體元件於糖尿病檢測之應用
    (2017) 周世彥; Chou, Shih-Yen
    奈微米製程技術發展不斷創新,進而可使元件的體積微小化、降低重量,同時提升單位面積的結構密度於產品的應用。目前微流體元件具有輕薄、價格低廉、即時檢測、可攜、樣本微量化和定量分析檢測的優點,將可有效獲得身體的資訊,在疾病初期獲得有效治療,也能有治療及疾病追縱的功能。本研究結合兩種奈微米製程製造微流體元件,以波長(Wavelength)為355 nm皮秒脈衝雷射(Picosecond pulse laser)製程,藉由探討不同雷射能量密度(Fluence)對玻璃基板寬度(Width)和深度(Depth)的影響,直寫長2 cm、寬2 mm、深度300 m的流道,並在流道上製作直徑400 m的微圓柱(Pillar)結構。另一方面,以靜電紡絲製程(Electrospinning process)在微圓柱上製作線徑為285 nm聚丙烯腈(PAN, Polyacrylonitrile)的奈米線,PAN奈米線會因微圓柱結構而形成三維奈米線支架,在微流體元件周圍塗UV固化膠,以蓋玻片封裝,並進一步進行細胞攔截測試。以肺腺癌細胞(A549)作為多種微流體元件攔截率測試之檢體,在細胞濃度為1.35×107 cell/mL下,以流量5 mL/hr流入0.2 mL,於僅有流道的微流體元件攔截率為41.54%,於同時具有流道和一維奈米線結構於微流體元件的攔截率為53.93%,於同時具有流道和三維奈米線結構在微流體元件的攔截率為100%,利用微流體元件捕捉細胞之功能捕捉紅血球(Red blood cell, RBC),具血液純化的作用,以能增加糖化血色素檢測的準確性,有效應用於糖尿病(Diabetes)檢測。
  • Item
    利用奈秒脈衝式雷射與奈米線微細成型電阻抗晶片於生醫檢測之研究
    (2015) 張傑富; Chang, Chieh-Fu
    隨著奈米科技(Nanotechnology)的不斷進步,近年來已有許多研究以奈米製程技術製作感測器,特別在製作生醫感測(Biomedical Sensing)晶片上,已投入大量心力進行研究,相較於現在醫院所使用之檢測機台,生醫晶片更可以達到定點照護(Point of care),對於病患的症狀可以即時的偵測,有助於落實預防醫學之目的。本研究是以奈秒雷射微細加工技術(Nanosecond laser micromachining technique),在網版印刷多層石墨烯製作電極(Screen-printed multilayered graphene electrode),該研究探討其能量密度(Fluence)和脈衝重疊率(Pulsed overlap)於材料之加工深度與線寬之影響。本研究採以紫外光波段之奈秒雷射,可製作出之最小電極間距為60 μm。結合靜電紡絲技術(Electrospinning technique)製作聚乙烯醇(Polyvinyl alcohol, PVA)複合葡萄糖氧化酶(Glucose oxidase)之奈米線薄膜於電極結構上,藉由加入不同濃度之葡萄糖氧化酶觀察其電性變化,可以得到當葡萄糖濃度僅有0.011 mM時以具有明顯的電阻變化,且在葡萄糖濃度為0.011 mM - 0.41 mM之區間具有一趨近線性之電流變化,推測此方法對於低濃度之葡萄糖檢測具有良好的價值,並有機會應用於生醫晶片製作且進行大量生產。