學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73894
Browse
7 results
Search Results
Item 以小波轉換鑑別人類情緒腦電波(2011) 洪偉哲人類情緒的正確鑑別存在著許多的困難,根據每個人所經歷的事物與心情狀態,影響著即使面對相同的事件,所呈現的情緒強度也有所不同。而現今對於人類腦波的研究逐漸盛行,藉由大腦人機介面(Brain computer interface)收集腦電波(Electroencephalogram)訊號,經由訊號分析、特徵擷取以及分類器,來鑑別腦電波訊號的情緒類別。本研究的受測者為六位男性,四位女性。年齡介於20歲至28歲。實驗流程為撥放六種情緒的臉部圖片,分別為高興、驚訝、生氣、厭惡、難過和恐懼,每種情緒有20張圖片,共有120張圖片。使用NeuroScan大腦人機介面,藉由非侵入式的腦電波訊號量測,共有30個通道。紀錄完成後,進行腦電波訊號前處理降低腦電波訊號的雜訊,使得腦電波訊號更接近真實的訊號,接著繪製出大腦空間能量頻譜圖,用以了解腦電波訊號的頻帶能量分布差異。將腦電波訊號進行小波轉換(Wavelet transform)分解訊號,選取能量分布差異較大的θ波為分類波段,接著計算各種的特徵,共有八類特徵,分別為最大值(Max)、最小值(Min)、全距(Range)、標準差(Standard deviation)、絕對中位差(Median absolute deviation)、絕對平均差(Average absolute deviation)、能量(Energy)及特徵向量(Eigenvectors),將各種特徵投入支持向量機(Support vector machine)進行分類,訓練的方式將隨機抽取出60%的腦電波訊號區段為訓練資料,40%為測試資料,以隨機投入支持向量機作各種情緒的鑑別,得到情緒鑑別從最高到最低的正確辨識率分別為87.50%和62.50%,平均值為76.25%。 研究中發現當使用無效的特徵或是相似的特徵,無法增加情緒的鑑別率,但是若增加有效的特徵,鑑別率會隨之提高,不過也會增加複雜度,經由比較其中較為有效的特徵為全距、標準差、絕對中位差、絕對平均差、能量及特徵向量,可較為明顯增加鑑別的效果。Item 基於K-means 演算法、小波轉換及支持向量機之心電訊號辨識系統(2011) 張家熏本論文利用小波轉換(Wavelet transform) 、K-means分群法(K-means clustering)及支持向量機(Support vector machine)等方法,建立一個辨識各種心律不整的心電辨識系統。本論文所提的方法可以大致區分為三個階段;第一階段使用K-means分群法把屬於同一類別但相異性卻很大的心律不整訊號分成數個次類別,在每一個次類別,各樣本會有較高的相似性。第二階段則把各次類別裡的每一個心搏樣本利用小波轉換擷取時頻特徵向量。第三階段以每一個心搏樣本的時頻特徵以及形態特徵為訓練資料,並運用支持向量機來建立本辨識系統的模型。為了驗證本系統的有效性以及可靠性,本論文利用MIT-BIH心律不整資料庫進行了三個實驗。實驗的結果本論文所提的方法具有相當高的辨識率達98.2%,最後與各相關辨識系統文獻比較差異。Item 應用人工智慧技術於肺音診斷系統(2010) 周承漢; Cheng-Han Chou摘要 胸腔聽診為診斷肺部病症的主要方法,醫生藉由聽診器聽取肺部聲音,憑藉其專業認知與經驗來判斷不同的肺音所代表的病症。在120 Hz以下的生理訊號是由心音與肺音組成,而人耳對於低頻的靈敏度不高,故造成醫生在聽診判斷上的困難。為解決此一問題,本研究的目的為建構多種肺音辨識系統,用來辨識肺泡音(vesicular breath sounds),支氣管音(bronchial breath sounds), 氣管音(tracheal breath sounds),爆裂音(crackle),哮喘音(wheeze),喘鳴音(stridor)等六種常見肺音。 首先使用壓電麥克風與資料擷取卡NI-PXI 4472B擷取人體肺音訊號,並作訊號預處理。接著以小波轉換作為特徵擷取之方法,透過圖形監控軟體LabVIEW 設計小波轉換之架構,訊號分解後之六個頻段做標準差與平均值運算,以得十七個特徵值。在分類器方面,本研究以倒傳遞與學習向量量化類神經網路作為系統分類器之子系統,用以模擬網路之可行性與內部參數,再經由LabVIEW建構類神經網路,分別測試其網路分類率,最後整合各子系統並建構二階段式類神經網路,以提升系統之可靠度。由實驗結果顯示,相較於傳統聽診方式,本研究成功建構出一套多種肺音診斷系統,可正確地分類出六種常見肺部聲音,彌補人耳對於低頻靈敏度不高的缺點,並由圖形監控軟體LabVIEW建構人機介面,顯示肺音之頻譜、登記病歷資料等,可供醫生作為診斷肺部疾病病患之輔具。其結果顯示,本研究所建構之系統其辨識率可達95%。 關鍵詞:肺音聽診、類神經網路、小波轉換、接受器操作特性曲線。Item 肺音感測系統之設計與實現(2008) 余勝智本論文研究目的,是藉由現今語音訊號的分類與辨識技術的成長,設計與實現肺音量測之人機介面系統此系統先依據特徵值所定義的特性分類出正常肺音與異常肺音,進而辨識出肺部之病症,做為醫師診斷之參考,也提供臨床應用和教學交流之用。在本論文中,對於特徵值擷取、硬體架構、演算法推導以及類神經網路都有完整介紹。 在本研究中針對肺部所發出之哮鳴異常聲音做偵測及判別。哮鳴音是一種偶發性且呈現連續高音調的肺部聲音,當呼吸道收縮產生氣流時,氣流經狹窄氣管發生振動而產生聲音,此聲音中夾雜著咻咻的聲音特徵,所以經常被拿來當作某些肺部疾病的重要特徵之一。 所設計的肺音感測人機介面系統,共包含硬體與軟體兩大部分,硬體架構部份,包含壓電麥克風及資料擷取卡,用來擷取肺部聲音訊號並將類比訊號轉換成數位訊號至電腦端做處理。軟體架構部份,使用MATLAB及LabVIEW程式,先利用MATLAB模擬類神經整體架構之可行性及內部參數,再利用LabVIEW設計訊號前處理及特徵值轉換架構,並進一步整合建構成人機介面用來分析紀錄與顯示判斷其哮鳴音的特徵量測結果。 最後,經由訓練後之類神經網路架構分類,對於肺音訊號是否具有哮鳴異常肺音之判別,其正確率可達92%,並可由所設計之人機介面顯示其肺音波形、特徵值及頻譜分析圖,可供醫生作為診斷肺部疾病病患之輔助用。Item 基於主成份分析法與灰關聯分析法之動態人臉辨識(2007) 邱柏智; BO-JR Chiou人臉辨識系統廣泛地應用於身分認證、門禁管理與人機界面等領域,近年來由於「智慧生活」科技的提倡,人臉辨識技術已延伸至人與機器最佳化介面之應用。此外視訊會議、影像內容檢索與醫學影像處理等方面,亦是其重要之應用領域。 本篇論文分為人臉偵測和人臉辨識兩大部分。在人臉偵測的部份,我們利用膚色分割和連通成份的方法找出人臉候選區,再使用色彩分析的方法從人臉候選區中尋找眼睛和嘴唇的特徵,最後再使用眼睛和嘴唇的幾何條件關係去定位出正確的人臉位置。在人臉辨識部分,我們提出一套結合主成份分析法與灰關聯分析法的人臉辨識方法,此方法的架構分為以下三個階段:首先,在影像前處理的階段,我們使用二維小波轉換,對輸入影像做資料壓縮的處理,接著,利用主成份分析法將壓縮過的人臉影像,投影到低維度的子空間中,計算出具有代表性的特徵臉,最後,再使用灰關聯分析法,來辨識出正確的人臉圖片。 為了驗證本篇所提出的方法,在靜態辨識實驗中,我們使用ORL人臉資料庫,做了一些分析和比較的實驗,實驗結果證明,在40人條件下,訓練樣本為五張時,可以得到91.6%的辨識率。而本篇方法在動態辨識實驗中以不同距離拍攝人臉,在30人條件下,可以得到八成以上的辨識率。Item 常見食用性貝類辨識之研究(2013) 鄭朝允民以食為天。相信大家都有吃過熱炒或海鮮的經驗,尤其文蛤更是常見的海鮮料理食材,而它們的貝殼有些人喜歡把玩;有些人喜歡收藏。由於一般人對於貝類的認知不是很清楚,若從書上或是網路上比對資料那是相當曠日廢時,故能發展一套系統能夠準確的辨識,不僅可以快速查詢貝殼的種類,也可以減少人力的辨識。本研究針對數位典藏與數位學習成果入口網中的食用貝類進行研究辨識,共44種。 本研究最好的結果為實驗E,其方法首先為輸入貝類影像;其次,將影像轉為灰階圖;第三,對灰階影像做快速傅立葉轉換;第四,選取在四角之低頻頻率,其大小為 矩陣;最後,利用SVM分類即可辨識出為哪種貝類,其準確率有到100%,平均辨識一張貝類影像所花的時間約為0.044秒。Item 同位檢查之易碎式與基於小波轉換之強健式浮水印之研究(2004) 李國彰本研究針對數位影像之驗證與所有權歸屬的兩大課題,分別提出易碎式與兩種強健式數位浮水印演算法: 基於同位檢查之易碎式浮水印的部分,乃配合密碼學的機制,產生與影像大小相同的一組亂數。再根據各像素點所對應的亂數值,檢查該點灰階值特定數個位元平面之同位特性,對LSB做第一道的編碼。為了避免某些灰階值造成第一道編碼不可區分的情形,再以XOR運算對LSB做第二道的編碼。整個浮水印技術是公開、安全的,且不需複雜的數學運算。對於影像於傳輸中可能遭遇的各種竄改,在接收端均能有效地偵測出來。並且偵測是以像素點為基礎,能夠達到精確地偵測影像遭竄改的區域。 基於小波轉換之強健式浮水印部分演算法一:在藍、綠、紅三個平面不同的中頻小波係數中,考慮於中間位元平面,分別在不同的空間相對位置,嵌入多個浮水印。其後以投票的機制,萃取浮水印並解密。演算法二的部分:則採用能量相近、空間分佈相關的兩個中頻小波頻帶,以相對的大小關係來嵌入浮水印,並且可以彈性調整嵌入的強度。實驗結果顯示,本研究所提出來的方法其嵌入浮水印的影像,對於亮度調整、對比調整、裁切、濾波、影像失真壓縮等攻擊,具有一定程度的強健性,適合用來作為數位影像版權的保護機制。