Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
科技與工程學院
機電工程學系
學位論文
學位論文
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73894
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
search.filters.author.張家熏
Subject
1
search.filters.subject.Arrhythmia classification system
1
search.filters.subject.k-mean clustering
1
search.filters.subject.k-means演算法
1
search.filters.subject.support vector machine
1
search.filters.subject.Wavelet Transform
Show more
Search subject
Submit
Browse subject tree
Date
Start
End
Submit
2011
1
Has files
1
No
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Author: search.filters.author.張家熏
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
基於K-means 演算法、小波轉換及支持向量機之心電訊號辨識系統
(
2011
)
張家熏
Show more
本論文利用小波轉換(Wavelet transform) 、K-means分群法(K-means clustering)及支持向量機(Support vector machine)等方法,建立一個辨識各種心律不整的心電辨識系統。本論文所提的方法可以大致區分為三個階段;第一階段使用K-means分群法把屬於同一類別但相異性卻很大的心律不整訊號分成數個次類別,在每一個次類別,各樣本會有較高的相似性。第二階段則把各次類別裡的每一個心搏樣本利用小波轉換擷取時頻特徵向量。第三階段以每一個心搏樣本的時頻特徵以及形態特徵為訓練資料,並運用支持向量機來建立本辨識系統的模型。為了驗證本系統的有效性以及可靠性,本論文利用MIT-BIH心律不整資料庫進行了三個實驗。實驗的結果本論文所提的方法具有相當高的辨識率達98.2%,最後與各相關辨識系統文獻比較差異。
Show more