教師著作

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/37078

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Enhanced primary production in the oligotrophic South China Sea by eddy injection in spring
    (American Geophysical Union (AGU), 2010-08-01) Lin, I-I; C.-C. Lien; C.-R. Wu; G. T. F. Wong; C.-W. Huang; T.-L. Chiang
    In May 2003, a phytoplankton bloom of chlorophyll-a (Chl-a) concentration of 0.3–0.4 mgm−3 was observed at the centre of northern South China Sea (SCS) by NASA's Sea-viewing Wide Field-of-View sensor. As this region is remote and known to be oligotrophic in spring (Chl-a concentration typically at ∼0.05–0.08 mgm−3), it is intriguing to explore this unusual happening. Based on six different remote sensing data and numerical modelling, the results suggest that the injection of an ocean eddy is the most likely cause of the bloom. Due to long-range transport of a large (700 × 500 km) anti-cyclonic ocean eddy, coastal nutrients and plankton could be brought across hundreds of kilometres to the centre of northern SCS and impact the biogeochemistry. The open ocean part of the northern SCS basin has long been considered generally free from coastal influences. This work provides new evidence that proves otherwise. Moreover, from the perspective of physical oceanography, it is interesting to observe that, outside the monsoon seasons, there can be well-defined anti-cyclonic ocean circulation existing in the SCS without the prevailing monsoonal wind.
  • Item
    A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea
    (2005-04-01) Tseng, C.-M.; G. T. F. Wong; I-I Lin; C.-R. Wu; K.-K. Liu
    A distinctive seasonal pattern in phytoplankton biomass was observed at the South East Asian Time-series Study (SEATS) station (18°N, 116°E) in the northern South China Sea (SCS). Surface chlorophyll-a, depth-integrated chlorophyll-a and primary production were elevated to 0.3 mg/m3, ∼35 mg/m2 and 300 mg-C/m2/d, respectively, in the winter but stayed low, at ≤0.1 mg/m3, ∼15 mg/m2 and 110 mg-C/m2/d as commonly found in other low latitude waters, in the rest of the year. Concomitantly, soluble reactive phosphate and nitrate+nitrite in the mixed layer also became readily detectable in the winter. The elevation of phytoplankton biomass coincided approximately with the lowest sea surface temperature and the highest wind speed in the year. Only the combined effect of convective overturn by surface cooling and wind-induced mixing could have enhanced vertical mixing sufficiently to make the nutrients in the upper nutricline available for photosynthetic activities and accounted for the higher biomass in the winter.