Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
科技與工程學院
電機工程學系
學位論文
學位論文
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
1
search.filters.author.Chen, Jyun-Yi
1
search.filters.author.陳峻逸
Subject
search.filters.subject.adaptive learning
1
search.filters.subject.educational technology
1
search.filters.subject.knowledge tracing
1
search.filters.subject.learning path
1
search.filters.subject.reinforcement learning
Show more
Search subject
Submit
Browse subject tree
Date
Start
End
Submit
2024
1
Has files
1
Yes
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Subject: search.filters.subject.adaptive learning
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
基於知識追蹤與強化式學習之適性化學習路徑推薦系統
(
2024
)
陳峻逸
;
Chen, Jyun-Yi
Show more
本研究提出了一個基於知識追蹤與強化式學習的適性化學習路徑推薦系統,旨在提供更有效的學習體驗。透過結合知識追蹤模型與強化式學習演算法,我們的系統能夠對學生的學習狀態進行精確評估,從而為每位學生設計最佳的學習路徑,以符合其個別的學習需求和能力水平。本系統的實驗結果顯示,我們的適性化學習路徑推薦能有效地幫助學生高效地達成學習目標。針對知識追蹤任務中常見的資料不平衡問題,本研究提出了一種創新的資料去重複方法,有效提高了模型的學習診斷效能。學習路徑的生成,則是採用深度強化式學習演算法來實現。為了進一步提升系統的適應性和可靠性,本論文引入了虛擬學生的概念。通過模擬大量虛擬學生數據,本系統能夠對學習路徑推薦策略進行有效的優化,從而提升系統的整體性能和穩定性。此方法不僅提高了教學模型的適應性,也為未來教育科技應用提供了新的研究方向和可能性。
Show more