學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
2 results
Search Results
Item 應用於極座標發射機封包調變之延遲鎖定迴路建構脈波寬度調變器設計與實現(2014) 馬瑜傑; Yu-chieh Ma近年來極座標發射機有關的文獻中,脈波寬度調變器(Pulse-Width Modulator, PWM)和三角積分調變器(Delta-Sigma Modulator, DSM),皆有被提出使用在發射機前端的封包調變[1]-[4]。對於需要高解析和高線性調變器的寬頻通訊系統而言,DSM就必須提高其量化器的位元數,才能通過寬頻通訊規格,但整體發射機需要的功率放大器個數就會倍增。幸運的是,若提高PWM的操作頻率,其所造成的諧波雜訊可輕易的被後端帶通濾波器濾除,所需的功率放大器也可少於DSM。 本論文提出一個應用於封包調變之延遲鎖定迴路建構脈波寬度調變器。為了達到高解析高線性的需求,一個128個相位輸出的延遲鎖定迴路被用來組合出64種置中型脈波寬度變化。本論文提出一個循環式壓控延遲線來減少延遲元件的個數,使得所有的128個相位可以同時地輸出。藉由一個簡易計數器,我們可將所有相位分為上升區以及下降區,來產生所需的脈波寬度輸出。本論文提出之延遲鎖定迴路建構脈波寬度調變器使用台積電90奈米製程。其整體功率消耗為36.83 mW,操作頻率為92.16MHz,供應電壓為1.2V。Item 應用在多重模式極座標發射機之封包三角積分調變器的設計與實現(2011) 廖述立; Liao, Shu-Li本論文將三角積分調變技術使用於極座標發射機中的封包調變上,並提出一個二階四位元全數位低通三角積分調變器,對其回授係數與輸入振幅大小做優化後,使得頻帶外雜訊低於一般的三角積分調變器,並讓發射機後端的帶通濾波器規格能夠減輕。當頻帶外雜訊降低後,發射機對於其他頻段的干擾可更為降低。 為了提升操作速率,本論文將高精確度截去器之判斷邏輯簡化,並利用查表法直接輸出回授數值,移除回授路徑上的移位乘法器。第二級迴路使用並列加法,透過改變加法順序使得第二級迴路可以減少一個加法器的延遲時間。簡化這些邏輯後,在使用CMOS 0.18μm製程所製造的晶片,其操作速率可至少達到208MHz。本論文以CMOS 0.18μm技術與CMOS 90nm技術各實現一個數位封包三角積分調變器,並可以處理第二代/第三代/第四代通訊系統之封包訊號,提供多重模式極座標發射機在封包調變的通用解決方案。而這兩顆晶片操作在208MHz時的消耗功率分別為3.582mW與0.99mW,在整個收發機中所佔的比率極低。 為了驗證本論文所提出的封包三角積分調變器的可行性,以本論文所設計的 三角積分調變器與切換式功率放大器陣列所組成的極座標發射機雛型也被實現。以CDMA-2000系統之訊號量測此發射機雛型時,輸出之鄰近通道功率洩漏比分別為-42.27dB與-54.02dB。以頻寬5MHz的LTE系統訊號量測時,輸出之鄰近通道功率洩漏分別為-34.12dB、-39.33dB與-32.36dB。在沒有附加的濾波器下,量測結果顯示此極座標發射機雛型能夠符合CDMA-2000與LTE(頻寬5MHz)規格,證明了本論文所提出之封包三角積分調變器應用在極座標發射機中的可行性。