學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73905

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    鎳在鍺(111)-c(2x8)及銀/鍺(111)-(√3x√3)表面上的成長
    (2012) 李振豪; Jhen-Hao Li
    在室溫下蒸鍍少量鎳原子於鍺(111)-c(2x8)重構之上,並以掃描穿隧顯微鏡觀測其在不同加熱退火溫度下的改變。隨著加熱退火溫度的提升,原先分散於樣品之上的原子團聚集並形成了四種具有不同結構的原子島。當加熱退火溫度再度提升之後,表面上的原子島全數消失,只剩下極少量不規則的原子團,推測消失的原子島已鑽入基底之下。 在鍺(111)-c(2x8)重構之上蒸鍍銀並加熱退火使樣品表面轉變為銀/鍺(111)-(√3x√3)重構後,於室溫蒸鍍少量鎳原子並以掃描穿隧顯微鏡觀測其表面結構在不同加熱退火溫度下的改變並與鎳鍺系統的實驗結果比較,STM圖像顯示銀能夠保護基底不受鎳原子的破壞,然而在加熱退火溫度提升的過程中,原子島的總體積亦隨之上升,顯示銀並無法完全阻止鎳原子與基底形成合金。而在樣品表面上發現的三種不同結構的原子島中,其中一種未曾於鎳鍺系統中發現,代表銀在此系統中起了很大的作用。
  • Item
    鈷在銀/鍺(111)-c(2×8)及鈷在銀/鍺(111)-(√3×√3)及(4×4)表面的結構衍化
    (2012) 徐仲俞; Hsu,Chung-Yu
    我們利用歐傑電子能譜(Auger electron spectroscopy,AES)、低能量電子繞射(low-energy electron diffraction )來深入探討銀在鍺(111)-c(2×8)及鈷在銀/鍺(111)-(√3×√3)R30°及(4×4)隨著不同退火溫度下表面的結構衍化。 室溫下,銀原子在鍺(111)的成長模式為層狀成長之後再以三維島狀的Stranstri-Krastanov (SK) mode。室溫蒸鍍不同鍍量的銀在鍺(111)-c(2×8)上並退火到420 K至930 K之間,隨著溫度上升至570 K,超過1 ML的銀原子會退吸附直到剩下1 ML的銀,最後在退火溫度為930 K時,銀原子會完全退吸附。在退火過程中,隨著不同的退火溫度及銀鍍量,銀/鍺(111)的結構,由原本的c(2×8)分別會形成(1×1)、(3×1)、(4×4)或(√3×√3)R30°的結構。 室溫蒸鍍鈷在銀/鍺(111)-(√3×√3) R30°及(4×4)上並退火到420 K至930 K之間,鈷在銀/鍺(111)-(√3×√3)R30°及(4×4)的結構上,在退火溫度570 K時,鈷會形成(√13×√13)及(2×2)的重構,而在退火溫度為650 K和730 K時,鈷都是形成(2×2)的重構,在退火溫度為830 K時,鈷原子會退吸附,此結果顯示鈷與基底不會形成合金。
  • Item
    鐵在鍺(111)-c(2×8)及銀/鍺(111)-(√3×√3) 表面上隨溫度衍化的行為
    (2012) 周明寬
    在室溫下蒸鍍少量鐵原子於鍺(111)-c(2×8)上,並進行一連串加熱退火的實驗,以穿隧掃描顯微鏡對其形貌進行觀測。從STM的影像圖和對表面上原子島的體積分析,顯示隨著加熱退火溫度的提升,鐵會在鍺基底上造成缺陷與破洞,藉以拉出鍺進行合金使體積增加,並形成數種不同形貌的島嶼。最終當加熱退火溫度達到840K以上後,表面上的原子團會聚集成數種巨大的原子島。 再來將銀蒸鍍至鍺(111)-c(2×8)表面上,將其加熱退火使樣品表面重構為銀/鍺(111)-(√3×√3)後,蒸鍍少量鐵再度進行加熱退火的實驗。與鐵鍺系統的實驗結果比較後發現,銀能夠保護基底上不會出現缺陷,但仍無法阻止鐵在加熱退火溫度升高後從基底拉出鍺進行合金。於鐵銀鍺系統中發現的原子島種類和鐵鍺系統中大致相同,但鐵銀鍺系統中出現新種類的島和一些跡象顯示銀對於鐵鍺合金的成長仍有影響力。