學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73905
Browse
2 results
Search Results
Item 鐵超薄薄膜在銥(111)上之表面結構與磁學性質研究(2014) 陳暐翔; Wei-Hsiang ChenMagnetic properties and surface structure of ultrathin Fe/Ir(111) films have been investigated using the surface magneto-optic Kerr effect and low-energy electron diffraction. Layer-by-layer growth of Fe/Ir(111) is observed for the first three monolayers at room temperature. For Fe thinner than three monolayers, pseudomorphic growth of Fe films is observed. The layer distance is close to that of fcc(111) Fe. For Fe thicker than three monolayers, the surface structure can be identified to be related to the bcc(110) arrangement of Fe atoms in Kurdjumov-Sachs orientation. As the Fe thickness increases, the linear increase of the Kerr intensity is observed. The Kerr intensity comes from the bcc-Fe and a thin magnetic dead layer is observed at the interface. The magnetic properties and surface structure of ultrathin Fe/Ir(111) films after high temperature annealing treatment have also been investigated. The Fe atoms diffuse into the Ir(111) substrate to be a FexIr1-x alloy as annealing temperature increases. For annealing temperature between 750 K and 800 K, there is a blocking of the interdiffusion behavior for Fe atoms into the Ir(111) substrate and the existence of the specific concentration of Fe of the FexIr1-x interface alloy which shows a stable state at this annealing temperature region. Combining the experimental results of Auger analysis, LEED patterns and the theoretical calculations, one can conclude that the specific concentration of Fe of the FexIr1-x interface alloy at the stable state is Fe0.5Ir0.5 as annealing temperature between 750 K and 800 K. For 5~9 ML Fe/Ir(111) films, a layered structure of Fe/FexIr1-x/Ir(111) could be obtained after high temperature annealing treatment. The surface of this layered structure becomes flatter after the high temperature annealing treatment. The structure of the top Fe films can be identified to be related to the bcc(110) arrangement of Fe atoms in Kurdjumov-Sachs orientation, however, strained by the underneath Fe0.5Ir0.5 interface alloy since this interface alloy is also strained by Ir(111) substrate which leads to the change of the lattice parameter of the unit cell of Fe bcc(110) at the surface from 0.248 nm to 0.272 nm. The surface structure transition between the KS orientation to strained KS orientation for 5~9 ML Fe/Ir(111) at annealing temperature from 300 K to 700 K have also been investigated. For annealing temperature less than 550 K, the KS orientation shows low periodicity. The periodicity of this KS orientation gets better as annealing temperature increases and become stable as annealing temperature larger than 700 K. Finally, the structural, compositional and magnetic phase diagram of Fe/Ir(111) is constructed. For Fe film thinner than 3 ML at annealing temperature between 300 K and 900 K, no Kerr intensity is observed due to the fcc arrangement of Fe films and FexIr1-x alloy. For Fe films thicker than 3 ML, Kerr intensity could be observed owing to the bcc arrangement of Fe films. The coercivity and saturation magnetization enhanced abruptly (higher than Fe/Pt(111) system) after the high temperature annealing treatment which is because of the compositional and structural change of this system.Item 超薄鐵銥合金的成分比例與結構研究(2011) 李亞倫; Ya-Lun Li本論文主要研究鐵超薄膜在銥(111)基底上的成長模式、表面結構、化學偏移及合金成分比例。樣品製備與實驗均在超高真空環境下進行,並透過低能量電子繞射與歐傑電子能譜進行實驗觀測。在室溫300 K鐵超薄膜的成長方面,我們首先以歐傑電子能譜觀察一系列不同厚度之鐵薄膜,發現鐵薄膜在銥單晶上的化學偏移與塊材電負度所預期的結果有相反的趨勢。當鐵薄膜厚度超過2 ML時,其L1M1M2歐傑電子動能隨厚度增加而下降,銥N1N2N7歐傑電子動能隨厚度增加而上升,介面效應仍然明顯;厚度超過4 ML時,鐵L1M1M2歐傑電子動能變化趨於平緩,介面效應減弱,此時樣品的化學狀態以塊材鐵為主。從室溫300 K鐵超薄膜成長之低能量電子繞射實驗結果發現,當鐵薄膜厚度超過5.8 ML時,鐵原子主要是以bcc(110)在fcc(111)上的Kurdjumov-Sachs (KS)模式進行磊晶;當厚度小於1.8 ML時,鐵原子則以基底fcc(111)的方式進行磊晶。鐵超薄膜樣品加熱退火至800 K時,我們從歐傑電子能譜的強度分析可以得到穩定的鐵銥成分比例為1:3;化學偏移的分析發現銥N1N2N7歐傑電子動能比起乾淨銥單晶有下降的趨勢,因此排除鐵原子退吸附的可能;在低能量電子繞射實驗結果中,電子入射動能120 eV時可以發現清楚的(2×2)亮點。由以上三個實驗結果我們推測鐵銥形成規則合金FeIr3,最後透過氬離子濺射實驗進行深度分析,發現實驗所得之濺射效率與FeIr3模型的計算結果相差3%,顯示鐵銥確實形成規則合金FeIr3。另一方面,在低能量電子繞射實驗結果中,電子入射動能75 eV時,可以發現鐵銥合金表面上存在有鐵的兩種結構:bcc(110) KS與bcc(111) (3/2×3/2)R20°。當鐵超薄膜樣品厚度大於5.8 ML時,此兩種結構會同時存在於加熱退火後的FeIr3合金表面;當厚度小於1.8 ML時,合金表面將只剩下bcc(111)結構。